Structure and Parameter Learning for Causal Independence and Causal Interaction Models

نویسندگان

  • Christopher Meek
  • David Heckerman
چکیده

We begin by discussing causal independence models and generalize these models to causal interaction models Causal interaction mod els are models that have independent mech anisms where mechanisms can have several causes In addition to introducing several particular types of causal interaction mod els we show how we can apply the Bayesian approach to learning causal interaction mod els obtaining approximate posterior distribu tions for the models and obtain MAP and ML estimates for the parameters We illus trate the approach with a simulation study of learning model posteriors

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Approach to Learning Causal Networks

Whereas acausal Bayesian networks represent probabilistic independence, causal Bayesian networks represent causal relationships. In this paper, we examine Bayesian methods for learning both types of networks. Bayesian methods for learning acausal networks are fairly well developed. These methods often employ assumptions to facilitate the construction of priors, including the assumptions of para...

متن کامل

Causal Networks Learning Acausal Networks Learning Influence Diagrams Learning Causal-Network Parameters Learning Causal-Network Structure Learning Hidden Variables Learning More General Causal Models Advances: Learning Causal Networks

Bayesian methods have been developed for learning Bayesian networks from data. Most of this work has concentrated on Bayesian networks interpreted as a representation of probabilistic conditional independence without considering causation. Other researchers have shown that having a causal interpretation can be important, because it allows us to predict the effects of interventions in a domain. ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Learning Sparse Causal Models is not NP-hard

This paper shows that causal model discovery is not an NP-hard problem, in the sense that for sparse graphs bounded by node degree k the sound and complete causal model can be obtained in worst case order N independence tests, even when latent variables and selection bias may be present. We present a modification of the well-known FCI algorithm that implements the method for an independence ora...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997